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Abstract 165 

In this paper, we present and analyze a global database of soil infiltration measurements, the Soil Water Infiltration 166 

Global (SWIG) database, for the first time. In total, 5023 infiltration curves were collected across all continents in the 167 

SWIG database. These data were either provided and quality checked by the scientists who performed the experiments 168 

or they were digitized from published articles. Data from 54 different countries were included in the database with 169 

major contributions from Iran, China, and USA. In addition to its global spatial coverage, the collected infiltration 170 

curves cover a time span of research from 1976 to late 2017. Basic information on measurement location and method, 171 

soil properties, and land use were gathered along with the infiltration data, which makes the database valuable for the 172 

development of pedo-transfer functions for estimating soil hydraulic properties, for the evaluation of infiltration 173 

measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and 174 

sand content) is available for 3842 out of 5023 infiltration measurements (~76%) covering nearly all soil USDA 175 

textural classes except for the sandy clay and silt classes. Information on the land use is available for 76 % of 176 

experimental sites with agricultural land use as the dominant type (~40%). We are convinced that the SWIG database 177 

will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration 178 

models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, 179 

and we add a disclaimer that the database is for use by public domain only and can be copied freely by referencing it. 180 

Supplementary data are available at https://doi.pangaea.de/10.1594/PANGAEA.885492. Data quality assessment is 181 

strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend/update the 182 

SWIG by uploading new data to it.  183 

Keywords: Infiltration, Land surface models, Land use, Pedo-transfer functions 184 

1 Introduction 185 

Infiltration is the process by which water enters the soil surface and it is one of the key fluxes in the hydrological cycle 186 

and the soil water balance. Water infiltration and the subsequent redistribution of water in the subsurface are two 187 

important processes that affect the soil water balance (Campbell, 1985; Hillel, 2003; Lal and Shukla, 2004; Morbidelli 188 

et al., 2011) and influence several soil processes and functions including availability of water and nutrients for plants, 189 

microbial activity, erosion rates, chemical weathering, and soil thermal and gas exchange between the soil and the 190 

atmosphere (Campbell, 1985). The generation of surface runoff, a key factor in controlling floods, is also directly 191 

related to the infiltration process. Water that cannot infiltrate in the soil becomes available for surface runoff. For these 192 
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reasons, infiltration plays a definitive role in maintaining soil system functions and as it is a key process that controls 193 

several of the United Nations Goals for Sustainability (Keesstra et al., 2016). 194 

The infiltration process is usually studied by determining the infiltrated amount of water versus time, from which the 195 

cumulative infiltration, I(t), [L], and the infiltration rate, i(t), [L T-1] can be derived. i(t) and I(t) are related to each 196 

other by derivation (Campbell, 1985; Hillel, 2003; Lal and Shukla, 2004): 197 

 
( )

( )
dI t

i t
dt

       (1) 198 

In general, the soil infiltration rate decreases nonlinearly over time and approaches a constant value after long 199 

infiltration time. Infiltration into the soil is controlled by several factors including soil properties (e.g., texture, bulk 200 

density, initial water content), layering, slope, cover condition (vegetation, crust, and/or stone), rainfall pattern (Smith 201 

et al., 2002; Corradini et al., 2017) and time. As soil texture and soil surface conditions (e.g., cover) are independent 202 

of time at the scale of individual infiltration events, these characteristics can be assumed to be constant during the 203 

event. On the other hand, soil structure, especially at the soil surface, can rapidly change, for instance, due to tillage, 204 

grazing or the destruction of soil aggregates by rain drop impact. In dry soils, initial infiltration rates are substantially 205 

higher than the saturated hydraulic conductivity of the surface layer due to capillary effects which control the sorptivity 206 

of the soil. However, as infiltration proceeds, the gradient between the pressure head at the soil surface and the pressure 207 

head below the wetting front reduces over time so that the infiltration rate finally reaches a constant value that 208 

approximates saturated hydraulic conductivity (Chow et al., 1988). 209 

Infiltration measurements have been largely used to estimate soil saturated hydraulic conductivity. This soil property 210 

is a key to correctly describe all the components of the soil and land surface hydrologic balance and is essential in the 211 

appropriate design of irrigation systems. Large efforts have been invested in literature to estimate this property from 212 

basic soil properties using pedo-transfer functions (PTFs). PTFs are knowledge-based rules or equations that relate 213 

simple soil properties to those properties of soil that are more difficult to obtain (Van Looy et al., 2017). Most of these 214 

efforts have been based on measurements made samples of disturbed or undisturbed soil material. With this infiltration 215 

database, data is now made available that may contribute to better predict the saturated soil hydraulic conductivity and 216 

demonstrate the effect of e.g. vegetation and land management on the parameters of interest.   217 

The Richards (1931), Eq. (2), written as a function of soil water content can be used to derive the closed-form 218 

expression of the infiltration rate in partially saturated soils.  219 

    
z z

D K
t z z

 
 

  
 

  

 
 
 

  (2) 220 

where θ is the volumetric soil water content [L3 L-3], t is the time [T], z is the vertical depth position [L], K(θ) is the 221 

soil hydraulic conductivity [L T-1], and D(θ) is soil water diffusivity [L2 T-1], which is defined by Eq. (3) (Childs and 222 

Collis-George, 1950; Klute, 1952): 223 

   
z z

h
D K 







  (3) 224 

where h is the matric potential in head units [L]. The exact relationships between soil water content, soil matric 225 

potential, and soil hydraulic conductivity are necessary to solve the Richards equation. Several solutions of Richards 226 
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equation and many empirical/conceptual/semi-analytical/physically-based models, e.g., Green and Ampt (1911); 227 

Philip (1957); Smith and Parlange (1978); Haverkamp et al. (1994); Corradini et al. (2017), have been introduced to 228 

describe the infiltration process over time, even for preferential flows, e.g. Lassabatere et al. (2014). Furthermore, 229 

several direct or indirect experimental systems have been introduced to measure soil infiltration at the laboratory or 230 

in the field under different conditions (Gupta et al., 1994; McKenzie et al., 2002; Mao et al., 2008a). Data obtained 231 

from these systems can also be used to deduce soil saturated hydraulic conductivity directly. 232 

Methods developed to measure and quantify water infiltration in soil are generally time consuming and costly. 233 

Therefore, PTFs have been developed and applied by many researchers, e.g., Jemsi et al. (2013), Parchami-Araghi et 234 

al. (2013), Kashi et al. (2014), Sarmadian and Taghizadeh-Mehrjardi (2014), and Rahmati (2017), in order to easily 235 

parameterize infiltration models. However, these PTFs have been developed for specific regions often limiting their 236 

applicability. As already mentioned, a large number of publications reporting soil infiltration data is available, but 237 

these data are dispersed in the literature and often difficult to access. Therefore, the aim of this data paper is to present 238 

and make available a collection of infiltration data digitized from available literature and from published or 239 

unpublished data provided directly by researchers around the world. These data are accompanied by metadata, which 240 

provide information about the location of infiltration measurement, soil properties, and land management. Finally, we 241 

will provide some first results highlighting the suitability of the database for further research. 242 

2 Method and Materials 243 

2.1 Data collection 244 

We collected infiltration measurements from all over the globe by contacting the data owners or by extracting 245 

infiltration data from published literature. To do this, a data request was sent to potential data owners through different 246 

forums and email exchanges. The flyer asked data owners to cooperate in the development of the SWIG database by 247 

providing infiltration data as well as metadata about experimental conditions (e.g. initial soil moisture content at the 248 

start of the experiment, method used), soil properties, land use, topography, geographical coordinates of the sites and 249 

any other information relevant to interpret the data and to increase the value of the database. Infiltration data reported 250 

in literature were digitized and included in the database together with additional information provided in these papers. 251 

The digitization approach is discussed in Sect. 2.2. In total, 5023 single infiltration curves were collected of which 252 

510 infiltration curves were digitized from 74 published papers (Table 1) and 4513 were provided by 68 different 253 

research teams (Tables 2 and 3) being published or unpublished data. The references and correspondences for data 254 

supplied by direct communications with researchers are also reported in Tables 2 and 3. Therefore, users may refer to 255 

these references for detailed information about the applied methods or procedures.  256 

<<Table 1 about here>> 257 

<<Table 2 about here>> 258 

<<Table 3 about here>> 259 
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2.2 Data digitization 260 

In order to digitize infiltration curves reported in literature, screenshots of the relevant plots were taken, and figures 261 

were imported into the plot digitizer 2.6.8 (Huwaldt and Steinhorst, 2015). First, the origin of the axes as well as the 262 

highest x and y-values were defined and the diagram plane was spanned. Then, all point values were picked out and 263 

an output table with the x – y pairs (time vs. infiltration rate or cumulative infiltration) was generated and stored. 264 

2.3 Database structure  265 

The SWIG database is prepared in *.xlsx with a backup file in *.CSV formats containing several datasets. 266 

Supplementary data are available at https://doi.pangaea.de/10.1594/PANGAEA.885492. The first dataset, named 267 

I_cm, contains cumulative infiltration data in centimeter units, and are referred to as Ixxxx, whereby xxxx is the 268 

identifier of the individual infiltration test. The corresponding time intervals in hours for the infiltration data are 269 

labeled T_Hour and named Txxxx. The constant or varying pressure or tension heads (if any) during infiltration 270 

measurements are also reported in another dataset named Tension_cm. The database also contains additional variables 271 

and information relevant to the infiltration data provided by data owners or digitized from articles, as listed in Table 272 

4, and which is labelled Metadata. Since the geometric mean diameter (dg) and standard deviation (Sg) of soil particle 273 

sizes are rarely measured, both parameters were computed using the following equations (Shirazi and Boersma, 1984): 274 

1

exp ( ),  0.01 ln
n

g i i

i

d a a f M


     (4) 275 

 
2 2 2

1

exp  ( ), 0.01 ln -  
n

g i i

i

S b b f M a


     (5) 276 

where fi is the percent of total soil mass having diameters equal to or less than Mi, i corresponds to clay, silt, and sand 277 

fractions having the arithmetic mean of two consecutive particle size limits of 0.01, 0.026, and 1.025 mm, respectively. 278 

For the infiltration data, where the soil texture is unknown, dg and Sg could not be calculated and the data field in the 279 

database was left empty. The database also contains the locations of the experimental sites in another dataset named 280 

Locations that provides the approximate latitude and longitudes in decimal degree (dd.dd) format. Tables 2 and 3 are 281 

also provided in the SWIG database in two other worksheets named Ref. for digitized data and Ref. for data provided 282 

by owner for corresponding issues. 283 

<< Table 4 about here>> 284 

3 Results and Discussion 285 

3.1 Spatial and temporal data coverage 286 

The SWIG database consists of 5023 soil water infiltration measurements spread over nearly all continents (Fig. 1). 287 

Data were derived from 54 countries (Table 5). The largest number of data sources were provided by scientists in Iran 288 

(n = 38), China (n = 23), and the USA (n = 15), whereby one data source might contain several water infiltration 289 

measurements. The SWIG database covers measurements from 1976 to 2017. A low coverage was obtained for the 290 
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higher latitudes of the Northern Hemisphere (above 60°) including Norway, Finland, Sweden, Iceland, Greenland, 291 

and Russia. The lack of reports with infiltration data from most countries of the former Soviet Union as well as the 292 

Sahelian and Sahara countries is also notable, as well as the small number of infiltration data from Australia. 293 

Nevertheless, the wide spatial and temporal distribution of infiltration data from this database provides a 294 

comprehensive view on the infiltration characteristics of many soils in the world which can be used in future studies.   295 

<<Figure 1 about here>> 296 

<<Table 5 about here>> 297 

3.2 Analysis of the database using soil properties 298 

Textural information (clay, silt, and sand content) are available for 3842 out of 5023 collected infiltration curves (~ 299 

76%). The infiltration measurements nearly cover all soil textural classes according to the USDA classification, except 300 

for the sandy clay and silt textural class (Fig. 2), that is of the most important advantages of the SWIG database. 301 

Because soils with extreme textures (clays, very sandy and stony soils) usually are less represented in studies focusing 302 

on their infiltration characteristics (Table 6) as well as their hydrological and erosional response (Poesen, 2018). Loam, 303 

sandy loam, silty loam, and clay loam contributed with 19, 18, 14, and 13 % (Table 6) to the infiltration measurements, 304 

respectively. Table 6 shows that infiltration measurements are almost equally distributed among textures when these 305 

are categorized in three major classes: course- (1092), medium- (1238), and fine to moderately fine-textured soils 306 

(1447). Table 7 reports on the soil properties that are available in SWIG and it gives some simple statistics such as 307 

mean, minimum, maximum, median, and coefficient of variation. Bulk density (available for 66 % of infiltration 308 

measurements) and organic carbon content (available for 62 % of infiltration measurements) are two other soil 309 

properties besides texture that have the highest frequency of availability. Saturated hydraulic conductivity, initial soil 310 

water content, saturated soil water content, calcium carbonate equivalent, electrical conductivity, and pH are available 311 

in 22 to 38 % of infiltration data. The other soil properties have a frequency lower than 10 %. Figure 3 gives a general 312 

overview of cumulative infiltration curves for the different soil textural groups listed in Table 6.  313 

<<Figure 2 about here>> 314 

<<Table 6 about here>> 315 

<<Table 7 about here>> 316 

<<Figure 3 about here>> 317 

3.3 Infiltration measurements in the SWIG database 318 

Different instruments were used to measure soil water infiltration (Table 8). About 32% (1595 out of 5023) of the 319 

measurements were carried out using different types of ring infiltrometers. The most frequently used methods are the 320 

disc infiltrometer methods (disc, mini-disc, and micro-disc, hood, and tension infiltrometers), which have been used 321 

in about 51% of the experiments. About 5% of the data were submitted to the database without specifying the 322 

measurement method (251 infiltration tests) and around 12 % of the measurements were carried out with other methods 323 

not listed above (Table 8).  324 

<<Table 8 about here>> 325 
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3.4 Land use classes represented in the SWIG database 326 

Since land use is one of the most important factors affecting soil surface processes including water infiltration in soils, 327 

we collected information on the type of land use at all the experimental sites when available. In general, the type of 328 

land use was reported in 3818 out of 5023 infiltration curves (~76 %) and information is reported in the Metadata 329 

dataset. For simplicity, we grouped all reported land use types into 22 major groups (Table 9). A frequency analysis 330 

showed that agricultural land use, i.e. cropped land, irrigated land, dryland, and fallow land, is the most frequently 331 

reported land use in the database with about 53% (2019 out of 3818) of all land uses. Grassland represents with 22% 332 

the second largest land use type. Pasture with 6 % and forest with 5 % are ranked as third and fourth largest reported 333 

land use types. The 18 remaining land use types all together cover only 545 experimental sites (less than 15%). The 334 

cumulative infiltration curves for four dominant land-use types are shown in Fig. 4 in order to give a general overview 335 

on the magnitudes and spread of cumulative infiltration between the different land uses. It is striking that all four land 336 

uses show upper and lower cumulative infiltration values that are very similar. 337 

<<Table 9 about here>> 338 

<<Figure 4 about here>> 339 

3.5 Estimating infiltration parameters from infiltration measurements 340 

In order to predict infiltration parameters from infiltration measurements, we classified the SWIG infiltration curves 341 

in two groups: i) infiltration curves that were obtained under the assumption of 1D infiltration and ii) infiltration curves 342 

that were obtained under 3D flow conditions. We fitted the three-parameter infiltration equation of Philip (Kutílek 343 

and Krejča, 1987), Eq. (6), to the 1D experimental data and the simplified form of Haverkamp et al. (1994), Eq. (7), 344 

to the 3D experimental data: 345 

1 3

2 2

1 1 2D
I St A t A t                                              (6) 346 

2

3

2

3 ( )
D sat

D s i

S
I = S t K t

R

 

 


 



 
 
 

                            (7) 347 

We reduced the number of parameters in Eq. (6) by defining A1=0.33×Ksat (Philip, 1957) and A2=A where A was 348 

assumed to be a lumped parameter. In Eq. (7), we put β = 0.6 (Angulo-Jaramillo et al., 2000) and the second term 349 

between brackets on the right hand side was assumed to be a lumped parameter. Therefore, we simplified the equations 350 

as follow: 351 

1 3

2 2

1
0.33

D sat
I St K t At                                                 (8) 352 

3
0.47

D sat
I = S t K t At                         (9) 353 

In our analysis, we assumed that double ring infiltrometer measurements result in 1D infiltration conditions, while the 354 

different types of disc infiltration and single ring infiltrometer measurements lead to 3D flow conditions that can be 355 

captured by Eq. (9). As this is not guaranteed for measurements made with rainfall simulator, Guelph permeameter, 356 
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Aardvark permeameter, linear and point source methods as well as Hood infiltrometer measurements, these infiltration 357 

curves were not considered in our first analysis. By excluding these methods, 596 infiltration curves were rejected 358 

from analysis. In addition, 251 infiltration curves were also excluded from analysis as no indication was available on 359 

the measurement method used. In total, 4178 infiltration curves were included in our analysis of which 828 infiltration 360 

curves reflected 1D and 3350 were considered as the results of 3D infiltration. As no sufficient information was 361 

available on the properties of the sand contact layer, we did not correct 3D infiltration measurements. Finally, the 362 

selected infiltration curves were fitted to Eq. (8) or (9) using lsqnonlin command in matlab.   363 

The fitting results of Eq. (8) to the single infiltrometer data are shown in Table 10. R2 values were higher than 0.9 in 364 

97 % of the cases and higher than 0.99 in 77 % of the cases. Fitting Eq. (9) to the 3D infiltration curves data, R2 values 365 

higher than 0.9 for 94 % of the infiltration curves and higher than 0.99 for 68 % of the infiltration curves were obtained. 366 

The statistics for the fitting process as well as the fitted parameters of two mentioned models are reported in the SWIG 367 

database in an additional dataset labelled Statistics. For infiltration curves excluded from analysis, an empty cell is 368 

reported. 369 

<<Table 10 about here>> 370 

The average values of estimated Ksat and sorptivity (S), using Eq. (8) or (9) as well as measured Ksat for different soil 371 

texture classes extracted from the current database is reported in Table 11. Comparison between estimated (
sat esK 

) 372 

and measured (
sat mK 

) values of Ksat (Table 11) reveals that there is reasonably good agreement between 373 

measurements and estimation, except for loamy sand (with mean 
sat esK 

= 62 cm h-1 vs. 
sat mK 

=25 cm h-1), sandy 374 

loam (with mean 
sat esK 

= 32 cm h-1 vs. 
sat mK 

=41 cm h-1), silt loam (with mean 
sat esK 

= 27 cm h-1 vs. 
sat mK 

375 

=3 cm h-1), and silty clay (with mean 
sat esK 

= 26 cm h-1 vs. 
sat mK 

=45 cm h-1) textural classes. However, the only 376 

significant difference between measured and estimated Ksat values was found for the silt loam texture class (Table 11) 377 

applying an independent T test.  378 

We also compared our estimated Ksat values from the infiltration measurements in SWIG database with Ksat values 379 

from databases that have been published in the literature (Table 12). Some of these databases like the one of Clapp 380 

and Hornberger (1978) and Cosby et al. (1984) have been used to parameterize land surface models. Most of the Ksat 381 

values in the listed databases have been obtained from lab scale measurements often performed on disturbed soil 382 

samples. In most of the reported databases Ksat is controlled by texture with the highest mean values obtained for the 383 

coarse textured and the lowest mean values for the fine textured soils. This is not the case for the Ksat values obtained 384 

from the SWIG database. Clayey soils have a mean value that is similar to the coarser textured soils. This may be 385 

partly explained by the fact that the measurements collected in the SWIG database are obtained from field 386 

measurements on undisturbed soils. It is also striking that the standard deviation of Ksat in the SWIG database is 387 

typically larger than the standard deviations obtained from the databases in literature. This indicates that texture is 388 

apparently not the most important control on Ksat values. This finding indicates that present parameterization in 389 

currently used land surface models, which are mainly based on texture, may severely underestimate the variability of 390 

Ksat. In addition, it shows that also mean values are not dominantly controlled by textural properties. Other land surface 391 

properties such as land use, crusting, etc. may turn out to be much more important. 392 
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<<Table 11 about here>> 393 

<<Table 12 about here>> 394 

3.6 Exploring the SWIG database using principal component analysis 395 

In order to demonstrate the potential of the SWIG database for analyzing infiltration data and for developing pedo-396 

transfer functions, principal component analysis (PCA) were performed and biplots were generated to show both the 397 

observations and the original variables in the principal component space (Gabriel, 1971).  398 

In a biplot, positively correlated variables are closely aligned with each other and the larger the arrows the stronger 399 

the correlation. Arrows that are aligned in opposite direction are negatively correlated with each other and the 400 

magnitude of the arrows is again a measure for the strength of the correlation. Arrows that are aligned 90 degrees to 401 

each other show typically no correlation.  Fig. 5 and 6 show the results of two PCA. The first PCA (Fig. 5) shows the 402 

relationship between soil textural properties, S and Ksat based on 3267 infiltration measurements. The first two 403 

principal components explain 74.5% of the variability in the data. Figure 5 shows a positive correlation between Ksat 404 

and S (0.527) and the largest values for both variables are found in clay soils. Clay content appears only to be weakly 405 

correlated with Ksat and S as is also shown by correlation coefficients of 0.112 and 0.025 respectively. Figure 6 shows 406 

the biplot of soil textural properties, Ksat, S, organic carbon content, and bulk density in the principal component space 407 

based on 1910 infiltration measurements. The first two principal components still explain 55% of the variability. 408 

Neither S nor Ksat showed appreciable correlations with available soil properties. Only Ksat and S are correlated (arrows 409 

are aligned but small) with a value of 0.29. Organic carbon and bulk density show a negative correlation with a 410 

calculated value equal to -0.51. It also shows that for example the sandy clay loam textural class (yellow dots) shows 411 

a wide spread in organic matter content and bulk densities. These analyses show that basic soil properties do not 412 

contain enough information to properly estimate Ksat and S. However, the SWIG database provides additional 413 

information like land use, initial water content and slope that might prove to be good predictors. A further analysis in 414 

this respect is however beyond the scope of this paper. More importantly, the present analysis in combination with the 415 

results provided in Table 12 shows that a texture dominated derivation of Ksat values, as done in most land surface 416 

models, does not provide an adequate way to estimate Ksat. 417 

<<Figure 5 about here>> 418 

<<Figure 6 about here>> 419 

3.7 Potential error and uncertainty in the SWIG database 420 

Similar to any other database, the data presented in the SWIG database may be subject to different error sources and 421 

uncertainties. These include: 1) transcription errors that occurred when implementing the measurement data into the 422 

EXCEL spreadsheets, 2) inaccuracy and uncertainties in determining related soil properties such as textural properties, 423 

3) violation of the underlying assumption when performing the experiments, and 4) uncertainty (variability) in 424 

estimated soil hydraulic properties due to the different measurement methods. Unfortunately, none of these error or 425 

uncertainty sources are under the control of the SWIG database authors and quantification of these sources is often 426 

difficult as the required information is often lacking. The uncertainty with respect to the effect of the measurement 427 
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techniques on estimated soil hydraulic properties may be quantified as information on the measurement is available. 428 

Yet some of these methods may only have been used in few cases making a statistical analysis difficult. 429 

With respect to the transcription error, intensive attempts have been made to double check data transcription to prevent 430 

or at least to minimize any probable error for this part. Values of soil properties such as textural composition are 431 

known to vary strongly between different labs and measurement methods. This is especially true for the finer textural 432 

classes like clay. Unfortunately, information on the measurement used to determine soil properties is most of the time 433 

lacking or insufficient to assess the magnitude of errors or biases. 434 

 The uncertainty with respect to the effect of measurement techniques on quantifying the infiltration process may be 435 

analyzed from the SWIG database as it provides information on the type of measurement technique used. This analysis 436 

is however beyond the scope of the paper. Potential error and uncertainty sources with respect to the use of different 437 

measurements are discussed in the supplementary material. 438 

The uncertainty on estimated soil hydraulic properties from infiltration measurements may be strongly controlled by 439 

the person performing the experiment but may also be due the different measurement windows of the methods in terms 440 

of measurement volume. The SWIG database provides information to quantify uncertainties introduced by difference 441 

in measurement volume and this analysis will be closely related to the assessment of the representative elementary 442 

volume, REV (see e.g. the work of Pachepsky on scaling of saturated hydraulic conductivity). 443 

Another case in the SWIG database that users may find odd is that some water repellent soils, for example the soils 444 

coded 1211 to 1420 in SWIG with very high sand content (>95%), can show relatively low infiltration rates, which 445 

would refer to clay texture rather than sand. However, one may consider that it is a natural phenomenon and not caused 446 

by measuring failure. 447 

One needs to carefully by interpreting estimated of Ksat from clayey soils showing high values of Ksat (for example the 448 

soils coded 3746 to 3833 in SWIG). The Ksat values for these soils were obtained using the single ring infiltrometer 449 

method. These infiltration experiments were conducted in the field under ponded conditions, and with a minimum 450 

disturbance of the natural surface (vegetation was only cut but roots let in place) and evidenced an impact of land use 451 

on Ksat, that is much higher than the impact of soil texture. Under ponding conditions, macropores can be activated, 452 

and this is all the more likely as a quite large cylinder diameter of 40 cm was used. Very high values were obtained 453 

for forested land uses, and sometimes for grassland, but cracks were present.  454 

3.8 Research potentials of the SWIG database 455 

We envision that SWIG offers a unique opportunity and information source to 1) evaluate infiltration methods and to 456 

assess their value in deriving soil hydraulic properties, 2) test different models and concepts for point scale and grid 457 

scale infiltration processes, 3) develop pedo-transfer functions (PTFs) to estimate soil hydraulic properties such as the 458 

Mualem van Genuchten parameters, 4) identify controls on infiltration processes, 5) validate global predictions of 459 

infiltration from land surface models, 6) study more complex processes like preferential flow in soils, and 7) highlight 460 

the state of the art on understanding the relationships between infiltration and several soil surface characteristics, for 461 

example the SWIG database effectively can contribute to the scope of Morbidelli et al. (2018) to advance the 462 

knowledge of infiltration over sloping surfaces. 463 
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We are confident that the SWIG database is just a first step in collecting and archiving infiltration data and we expect 464 

that more and more data will become available in the near future.  These data will be archived in SWIG and thus made 465 

available to the world-wide research community. In this regard, we are interested in receiving existing or newly 466 

measured infiltration curves and for this purpose the corresponding author will serve as point of contact or data can 467 

be made available through the International Soil Modeling Consortium, ISMC (https://soil-modeling.org/), for further 468 

archiving in SWIG. 469 

4 Conclusion 470 

We have collected 5023 infiltration curves from field experiments from all over the world covering a broad range of 471 

soils, land uses and climate regions. We estimated saturated hydraulic conductivity, Ksat, and sorptivity from more 472 

than 3000 infiltration curves and compared estimated Ksat values with values from different databases published in 473 

literature. We showed that contrary to the assumption made in many land surface and global climate models, that 474 

texture is not the controlling factor for Ksat. In addition, the variability in Ksat derived from these field measurements 475 

is considerably larger than reported in literature. The collected infiltration curves were archived as SWIG database on 476 

the PANGAEA platform and are therefore world-wide available. The data are structured into *.xlsx and *.csv files 477 

and include metadata information for further use. Data analysis revealed that infiltration curves are lacking for clayey, 478 

sandy textured and stony soils. Also infiltration curve data are lacking for the Northern and permafrost regions. Here 479 

additional efforts are needed to collect additional data as these regions are sensitive to climate change which will 480 

clearly affect the soil hydrology. 481 
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Table 1- References used to extract infiltration curves and metadata 885 

N
o

. 

Dataset 
Reference 

 

N
o

. 

Dataset 
Reference 

 

N
o

. 

dataset 
Reference 

From To From To From To 

1 295 317 Miller et al. (2005) 26 4516 - Delage et al. (2016) 51 4692 - Ayu et al. (2013) 

2 318 322 Adindu Ruth et al. (2014) 27 4517 4518 Ruprecht and Schofield (1993) 52 4693 4699 Rei et al. (2016) 

3 542 544 Alagna et al. (2016) 28 4519 4520 Bertol et al. (2015) 53 4700 4702 Omuto et al. (2006) 

4 545 - Angulo-Jaramillo et al. (2000) 29 4521 4523 Naeth et al. (1991) 54 4703 4706 Návar and Synnott (2000) 

5 546 548 Su et al. (2016) 30 4524 4529 Huang et al. (2011) 55 4707 - Scotter et al. (1988) 

6 549 550 Quadri et al. (1994) 31 4530 4537 van der Kamp et al. (2003) 56 4708 4720 Khan and Strosser (1998) 

7 551 553 Qi and Liu (2014) 32 4538 - Jačka et al. (2016) 57 4721 4724 Lipiec et al. (2006) 

8 554 558 Huang et al. (2015) 33 4539 4568 Matula (2003) 58 4725 - Suzuki (2013) 

9 559 568 Al-Kayssi and Mustafa (2016) 34 4569 4586 Casanova (1998) 59 4726 4728 Sukhanovskij et al. (2015) 

10 1421 1432 Bhardwaj and Singh (1992) 35 4587 4593 Holzapfel et al. (1988) 60 4729 4749 Al-Ghazal (2002) 

11 1433 1435 Berglund et al. (1980) 36 4594 4605 Wang et al. (2015b) 61 4750 - Sorman et al. (1995) 

12 1436 1443 Wu et al. (2016) 37 4606 4611 Mao et al. (2016) 62 4751 4764 Bowyer‐Bower (1993) 

13 1444 1446 Chartier et al. (2011) 38 4612 - Wang et al. (2016) 63 4765 4788 Medinski et al. (2009) 

14 1447 1456 Sihag et al. (2017) 39 4613 4615 Qian et al. (2014) 64 4789 4792 Latorre et al. (2015) 

15 1457 1460 Machiwal et al. (2006) 40 4617 4619 Fan et al. (2013) 65 4793 4795 Biro et al. (2010) 

16 1461 1466 Igbadun et al. (2016) 41 4620 - Zhang et al. (2000) 66 4796 4799 Mohammed et al. (2007) 

17 1467 1469 Mohanty et al. (1994) 42 4621 4623 Wang et al. (2015a) 67 4800 4815 Abdallah et al. (2016) 

18 1470 1472 Sauwa et al. (2013) 43 4624 4633 Yang and Zhang (2011) 68 4816 4819 Murray and Buttle (2005) 

19 1473 1476 Arshad et al. (2015) 44 4634 4657 Wu et al. (2016) 69 4820 4831 Zhang et al. (2015) 

20 1477 1488 Bhawan (1997) 45 4658 4663 Ma et al. (2017) 70 4832 4837 Perkins and McDaniel (2005) 

21 1489 1495 Uloma et al. (2013) 46 4664 4681 Thierfelder et al. (2003) 71 4838 4841 Arriaga et al. (2010) 

22 1496 - Al-Azawi (1985) 47 4682 4683 Commandeur et al. (1994) 72 4842 4857 Thierfelder et al. (2017) 

23 1497 1499 Ogbe et al. (2011) 48 4684 4686 Di Prima et al. (2016) 73 4858 4867 Thierfelder and Wall (2009) 

24 1500 1507 Teague (2010) 49 4687 4688 Angulo-Jaramillo et al. (2000) 74 4868 4879 Abagale et al. (2012) 

25 4506 4515 Muhamad et al. (2008) 50 4689 4691 Machiwal et al. (2006)      
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Table 2- References and correspondence for data supplied by data owners 887 

No. 
Dataset 

Contact person Email for contact Reference 
From To 

1 1 135 M. Rahmati mehdirmti@gmail.com 
Rahmati (2017) 

2 136 294 A. Farajnia farajnia1966@yahoo.com  
Unpublished data 

3 323 376 M. Shukla shuklamk@nmsu.edu  
Shukla et al. (2003 & 2006)     

4 377 426 S. H. R. Sadeghi sadeghi@modares.ac.ir  

Sadeghi et al. (2014, 2016a, b, c, 

2017a, b), Hazbavi and Sadeghi 

(2016), Kheirfam et al. (2017a, b) 

Sharifi Moghaddam et al. (2014);  

Ghavimi Panah et al. (2017); Kiani-

Harchegani et al. (2017) 

5 427 466 M. H. Mohammadi mhmohmad@ut.ac.ir Unpublished data 

6 467 505 F. Meunier felicien.meunier@uclouvain.be  
Unpublished data 

7 506 541 N. Sephrnia n.sepehrnia@gmail.com  
Sepehrnia et al. (2016 & 2017)       

8 569 817 D.Moret-Fernández david@eead.csic.es  
Unpublished data 

9 818 940 M. Vafakhah vafakhah@modares.ac.ir  

Kavousi et al. (2013); Fakher Nikche 

et al. (2014)  

10 941 1060 A. Cerdà artemio.cerda@uv.es Unpublished data 

11 1061 1079 J. Rodrigo-Comino rodrigo-comino@uma.es 
Rodrigo-Comino et al. (2016); 

Rodrigo-Comino et al. (2018) 

12 1080 1112 H. Asadi hossein_asadi52@yahoo.com  
Nikghalpour et al. (2016) 

13 1113 1119 K. Bohne klaus.bohne@uni-rostock.de  
Unpublished data 

14 1120 1125 L. Mao leoam@126.com 
Mao et al. (2008b; 2016)     

15 1126 1166 L. Lichner lichner@uh.savba.sk  

Dušek et al. (2013), Lichner et al. 

(2011; 2012; 2013)     

16 1167 1210 M. V. Ottoni marta.ottoni@cprm.gov.br  
Oliveira (2005) 

17 1211 1420 
R. Sándor sandor.rencsi@gmail.com  

Fodor et al. (2011); Sándor et al. 

(2015)  18 4476 4485 

19 1508 1519 A. Stanley ajayistan@gmail.com  

Igbadun et al. (2016); Othman and 

Ajayi (2016)  

20 1520 1521 A. R. Vaezi vaezi.alireza@gmail.com  
Unpublished data 

21 1522 1536 A. Albalasmeh aalbalasmeh@just.edu.jo  
Gharaibeh et al. (2016) 

22 1537 1578 D. Machiwal dmachiwal@rediffmail.com  

Machiwal et al. (2006, 2017)    , 

Ojha et al. (2013) 

23 1579 1592 H. Emami hemami@um.ac.ir  
Fakouri et al. (2011a, 2011b)     

24 1593 1895 J. Mertens jan.mertens@engie.com Mertens et al. (2002, 2004, 2005)      

25 1896 2115 D. Jacques diederik.jacques@sckcen.be  
Jacques (2000); Jacques et al. (2002) 

26 2116 2139 J. Votrubova jana.votrubova@fsv.cvut.cz  
Votrubova et al. (2017) 

27 2140 2143 J. Batlle-Aguilar jorbat1977@hotmail.com Batlle-Aguilar et al. (2009) 

28 2144 2179 R. A. Armindo rarmindo@ufpr.br  
Unpublished data 

29 2180 2209 S. Werner steffen.werner@rub.de Unpublished data 

30 2210 2255 S. Zacharias steffen.zacharias@ufz.de  
Unpublished data 

31 2256 2281 S. Shutaro sshiraki@affrc.go.jp  
Unpublished data 

32 2282 2304 T. Saito tadaomi@muses.tottori-u.ac.jp  
Saito et al. (2016) 

33 2305 2354 R. Taghizadeh-M. rh_taghizade@yahoo.com  
Unpublished data 
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Table 3- References and correspondence for data supplied by data owners (continued by Table 2) 888 

No. 
Dataset 

Contact person Email for contact Reference 
From To 

34 2355 2356 
W. G. Teixeira wenceslau.teixeira@embrapa.br  Teixeira et al. (2014) 

35 3644 3647 

36 2357 2436 Y. Zhao yzhaosoils@gmail.com  Zhao et al. (2011) 

37 2437 2475 A. A. Moosavi aamousavi@gmail.com  
Unpublished data 

38 2476 2552 Y. A. Pachepsky Yakov.Pachepsky@ars.usda.gov  
Rawls et al. (1976) 

39 2553 2643 A. Panagopoulos panagopoulosa@gmail.com  

Hatzigiannakis and Panoras (2011) 

+ unpublished data 

40 2644 2649 B. Clothier Brent.Clothier@plantandfood.co.nz Al Yamani et al. (2016) 

41 2650 2710 
C. Castellano ccastellanonavarro@gmail.com  

Unpublished data 
42 3507 3597 

43 2711 2756 F. Becker fabian.becker@fu-berlin.de  
Unpublished data 

44 2757 2765 I. Vogeler iris.vogeler@plantandfood.co.nz 
Vogeler et al. (2006); Cichota et al. 

(2013) 

45 2766 2788 R. Morbidelli renato.morbidelli@unipg.it  
Morbidelli et al. (2017) 

46 2789 2832 S. Giertz sgiertz@uni-bonn.de  
Giertz et al. (2005) 

47 2833 2868 T. Vogel vogel@fsv.cvut.cz  
Vogel and Cislerova (1993) 

48 2869 2948 W. Cornelis Wim.Cornelis@ugent.be  
Pulido Moncada et al. (2014) 

49 2949 3386 
Y. Coquet yves.coquet@univ-orleans.fr  

Coquet (1996); Coquet et al. 

(2005); Chalhoub et al. (2009) 50 3705 3709 

51 3387 3506 B. Mohanty bmohanty@tamu.edu  
Das Gupta et al. (2006) 

52 3598 3643 D. J. Reinert dalvan@ufsm.br  
Mallmann (2017) 

53 3648 3657 M.R. Pahlavan Rad pahlavanrad@gmail.com  
Pahlavan-Rad (2016) 

54 3658 3680 T. Saito tadaomi@muses.tottori-u.ac.jp  
Unpublished data 

55 3681 3704 
X. Li xyli@bnu.edu.cn  

Li et al. (2013); Hu et al. (2016) 
56 4497 4505 

57 3710 3745 Y. Bamutaze yazidhibamutaze@gmail.com  
Unpublished data 

58 3746 3833 
I. Braud isabelle.braud@irstea.fr  

Gonzalez-Sosa et al. (2010); Braud 

(2015); Braud and Vandervaere 

(2015) 59 3907 4011 

60 3834 3874 M. R. Mosaddeghi mosaddeghi@yahoo.com  
Unpublished data 

61 3875 3906 S. B. Mousavi b_mosavi2000@yahoo.com  
Unpublished data 

62 4012 4026 M. Pulido manpufer@hotmail.com Unpublished data 

63 
4027 4457 

F. P. Roberts frapar@ceh.ac.uk 
Unpublished data 

4458 4475 Robinson et al. (2016, 2017)     

64 4486 4496 T. Picciafuoco picciafuoco@hydro.tuwien.ac.at Morbidelli et al. (2017) 

65 4880 4886 M. A. Liebig mark.liebig@ars.usda.gov  
Liebig et al. (2004) 

66 4887 4936 Y. Zeng y.zeng@utwente.nl  
Zhao et al. (2017, 2018)     

67 4937 5018 L. Lassabatere laurent.lassabatere@entpe.fr  

Lassabatere et al. (2010); Yilmaz et 

al. (2010); Coutinho et al. (2016) 

68 5019 5023 I. Eskandari eskandari1343@yahoo.com  
Unpublished data 
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Table 4- Description of the variables listed in database 890 
Column Supplies: Dimension 

Code Data set identifier with 4 digits from 0001 to 5023 

Clay Mass of soil particles, < 0.002 mm % 

Silt Mass of soil particles, >0.002 and < 0.05 mm % 

Sand Mass of soil particle, > 0.05 and < 2 mm % 

Texture 
1: Sand; 2: Loamy sand; 3: Sandy loam; 4: Sandy clay loam; 5: Sandy Clay; 6: Loam; 7: Silt 

loam; 8: Silt; 9: Clay loam; 10: Silty clay loam; 11: Silty clay; 12: Clay 

Gravel Mass of particles larger than 2 mm % 

dg Geometric mean diameter  mm 

Sg Standard deviation of soil particle diameter 

OC Soil organic carbon content % 

Db Soil bulk density g cm-3 

Dp Soil particle density g cm-3 

Ksat Soil saturated hydraulic conductivity cm h-1 

Theta_sat Saturated volumetric soil water content cm3 cm-3 

Theta_i Initial volumetric soil water content cm3 cm-3 

FC Soil water content at field capacity cm3 cm-3 

PWP Soil water content at permanent wilting point (1500 kPa) cm3 cm-3 

Theta_r Residual volumetric soil water content cm3 cm-3 

WAS Wet-aggregate stability % 

MWD Aggregates mean weight diameter mm 

GMD Aggregates geometric mean diameter mm 

EC Soil electrical conductivity dS m-1 

pH Soil acidity - 

Gypsum Soil gypsum content % 

CCE Soil carbonate calcium equivalent % 

CEC Soil cation exchange capacity Cmolc kg-1 

SAR Soil sodium adsorption ratio - 

DiscRadius Applied disc radius (if any) mm 

Instrument 

Applied instruments for infiltration measurement: 

1: Double ring; 2: Single ring; 3: Rainfall simulator; 4: Guelph permeameter; 5: Disc 

infiltrometer; 6: Micro-infiltrometer; 7: Mini-infiltrometer; 8: Aardvark Permeameter; 9: 

Linear source method; 10: Point source method; 11: Hood infiltrometer; 12: Tension 

infiltrometer; 13: BEST method 

Vegetation cover  % 

Land use Dominant land-use or land cover type of the experimental site 

Rainfall intensity Simulated rain intensity mm h-1 

Slope The mean slope of the soil surface % 

Treatment Applied treatment in experimental site  

Crust Yes: existence of crust; No: no crust layer  

Sand contact layer Yes: sand contact layer is applied during infiltration measurement; No: no sand contact layer 
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Table 5- Countries and the number of data sources (n) contributing to the database 892 

Country n  Country n  Country n 

Iran 38  Austria 2  Indonesia 1 

China 23  Chile 2  Iraq 1 

USA 15  Ghana 2  Japan 1 

Brazil 9  Morocco 2  Jordan 1 

Spain 9  Namibia 2  Kenya 1 

France 9  New Zealand 2  Lebanon 1 

Germany 8  Pakistan 2  Malawi 1 

India 8  Russia 2  Mexico 1 

Canada 7  Senegal 2  Mozambique 1 

United Kingdom 7  Slovakia 2  Myanmar 1 

Hungary 6  South Africa 2  Netherland 1 

Nigeria 6  Sudan 2  Poland 1 

Greece 5  Zambia 2  Scotland 1 

Belgium 4  Argentina 1  Tanzania 1 

Italy 4  Australia 1  Telangana 1 

Czech Republic 3  Benin 1  UAE 1 

Saudi Arabia 3  Cameroon 1  Uganda 1 

Australia 2  Colombia 1  Zimbabwe 1 
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Table 6- Number of soils in each soil USDA textural class for which infiltration data are included in the database. 894 
Group Soil texture class Availability 

Coarse-textured soils  1092 

 Sand 291 

 Loamy sand 111 

 Sandy loam 690 

Medium-textured soils  1238 

 Loam 716 

 Silt loam 522 

 Silt 0 

Fine to moderately fine-textured soil  1476 

 Clay loam 514 

 Clay 352 

 Silty clay loam 253 

 Sandy clay loam 226 

 Silty clay 131 

 Sandy clay 0 

 895 

 896 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-11

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 6 March 2018
c© Author(s) 2018. CC BY 4.0 License.



31 
 

Table 7- Soil properties, number of data entries in the database (out of 5023 soil water infiltration curves in total), 897 
and their statistical description 898 

Soil properties Availability Fr (%) Mean Min Max Median CV (%) 

Clay (%) 3842 76 24 0 80 20 64 

Silt (%) 3842 76 36 0 82 37 52 

Sand (%) 3842 76 41 1 100 38 63 

Bulk density (g cm-3) 3295 66 1.32 0.14 2.81 1.35 20 

Organic carbon (%) 3102 62 3 0 88 1 200 

Saturated hydraulic cond. (cm h-1) 1895 38 41 0 3004 3 426 

Initial soil water content (cm3 cm-3) 1569 31 0.17 0 0.63 0.14 68 

Saturated soil water content (cm3 cm-3) 1400 28 0.44 0.01 0.87 0.45 24 

Carbonate calcium equivalent (%) 1399 28 14 0 56 8 101 

Electrical conductivity (dS m-1) 1113 22 25 0 358 1 249 

pH 1081 22 7.4 4.7 8.6 7.6 12 

Particle density (g cm-3) 438 9 2.52 1.73 2.97 2.56 9 

Gypsum (%)  380 8 4 0 49 3 137 

Cation exchange capacity (cmolc kg-1) 357 7 17 3 26 18 21 

Wet-aggregate stability (%) 309 6 61 5 96 63 37 

Residual soil water content (cm3 cm-3) 263 5 0.10 0.001 0.38 0.06 86 

Mean weight diameter (mm) 258 5 1 0.10 2.75 1.0 54 

Gravel (%) 243 5 18 0 92 15 84 

Sodium adsorption ratio 156 3 5 0 89 1 351 

Soil water content at FC (cm3 cm-3) 74 1 0.28 0.12 0.54 0.27 34 

Soil water content at PWP (cm3 cm-3) 64 1 0.18 0.05 0.36 0.20 47 

Geometric mean diameter (mm) 73 1 0.6 0.4 0.8 0.6 18 

Fr: Frequency (%), Min: Minimum, Max: Maximum, CV: coefficient of variation. 899 
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Table 8- Instruments used to measure soil infiltration curves 900 
Instrument/method used  Infiltration curves 

Ring 

Double ring 828 

Single ring 570 

Beerkan (BEST) 197 

Overall  1595 

Infiltrometer 

Disc 607 

Mini-disc 1140 

Micro-disc 36 

Hood 23 

Tension 752 

Overall  2558 

Permeameter 
Guelph 181 

Aardvark 50 

Overall  231 

Rainfall simulator  374 

Linear source method  10 

Point source method  4 

Not reported  251 

 Sum 5023 

901 
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Table 9- Number of infiltration curves with a given land use types 902 

Land use n  Land use n 

Agriculture 2019  Vineyards 22 

Grassland 821  Upland 11 

Pasture 229  Pure Sand 10 

Forest 204  Brushwood 6 

Garden 152  Road 5 

Bare 99  Agro-pastoral 4 

Urban Soils 82  Park 3 

Savanna 41  Salt-marsh soil 3 

Abandoned farms 39  Afforestation 2 

Idle 32  Campus 2 

Shrub 30  Residential  2 

Available  3818  Unknown 1205 

 903 
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Table 10- Accuracy analysis of empirical models fitted to experimental data of infiltration 904 
Infiltration 

type 

  R2 

 

RMSE (cm)  R2 > 

0.90 

R2 

>0.99 n Mean Min Max STD Mean Min Max STD 

1D 828 0.985 0.529 1 0.049 0.900 1.3e-4 69.30 3.31 801 640 

3D 3350 0.975 0.032 1 0.066 0.449 5.5e-12 98.95 2.95 3136 2276 

All 4178 0.977 0.032 1 0.063 0.538 5.5e-12 98.95 3.03 3937 2916 

STD: standard deviation905 
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Table 11- Estimated or measured average values of infiltration parameters for different textural classes extracted from the current database 906 

Texture class 

Estimated by Eq. (8) or (9) 

  

Measured 

  

Independent T 

test between 

measured and 

estimated Ksat 
n§ 

S (cm h-0.5) 

  

Ksat (cm h-1) 
n§ 

Ksat (cm h-1) 

Mean Median STD Mean Median STD Mean Median STD df T value 

Sand 291 2.3 0.26 4.3 42.2 15 134.5 229 43.6 24 149 518 0.10ns 

Loamy sand 92 10.6 5.7 17.5 61.4 10 173.2 63 24.6 8.2 72 153 1.59ns 

Sandy loam 500 9.2 2.95 15.7 32 3.1 94.5 424 41.2 5.7 166 922 1.05ns 

Silt loam 409 9.4 1.5 19.1 26.5 1.7 61.7 165 2.9 0.96 5.1 572 4.90** 

Loam 583 7.9 2.4 12.9 7.8 0.28 26.7 270 4.9 1.18 13.7 851 1.69ns 

Sandy clay loam 185 5.9 2.1 8.6 7.4 1.4 12.8 84 5.4 2.24 6.9 267 1.35ns 

Silty clay loam 250 3.2 0.64 12.5 10.6 1.7 24.1 64 12.3 2.42 63.2 312 0.32ns 

Clay loam 467 6.8 2.1 13.6 8.3 2.3 20 166 7.6 2.97 21.3 631 0.38ns 

Sandy clay - - - - - - - - - - - - - 

Silty clay 121 7.7 2.2 13.4 26.2 7.8 61.5 54 44.8 6.97 88.2 173 1.59ns 

Clay 333 14.6 1.7 39.5 354.3 1.3 1268.5 79 148.8 2.94 458.4 410 1.42ns 

Silt - - - - - - - - - - - - - 

Total 4179 8.5 2.6 18.2 46 1.8 374.8 1895 41 3.4 174 -  -  

§: the number soils included in calculation 907 
ns: insignificant and **: significant at 1 % probability level 908 
STD: standard deviation 909 

  910 
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Table 12- Comparison of the estimated Ksat values from current database (SWIG) with measured Ksat values presented in literature 911 

Texture class 
Data 

source 

Clapp and 

Hornberger 

(1978) 

Rosetta3 
Cosby et al. 

(1984) 

Rawls database Ahuja database 
UNSODA 

database 

US soils Ksat 

data 

EU-HYDI 

database 

(Zhang and 

Schaap, 2017) 

(Schaap and 

Leij, 1998) 

(Schaap and 

Leij, 1998) 

(Schaap and 

Leij, 1998) 

(Pachepsky and 

Park, 2015) 

(Weynants et al., 

2013) 

Ksat logKsat/STD logKsat/STD logKsat/STD logKsat/STD logKsat/STD logKsat/STD logKsat/STD 

(cm min-1) (cm day-1) (in h-1) (cm day-1) (cm day-1) (cm day-1) (cm h-1) (cm day-1) 

Sand 
Literature 1.056 2.81/0.59 (253) 0.82/0.39 2.71/0.51 (97) 3.01/0.45 (82) 2.70/074 (129) 1.57/0.71 (115) 0.71/1.45 (264) 

SWIG 0.704 3.01 /3.51 (291) 1.22 /1.73 3.01 /3.51 (291) 3.01 /3.51 (291) 3.01 /3.51 (291) 1.63 /2.13 (291) 3.01 /3.51 (291) 

Loamy sand 
Literature 0.938 2.02/0.64 (167) 0.30/0.51 1.91/0.61 (135) 2.09/0.69 (19) 2.36/0.59 (51) 1.03/0.42 (76) 0.80/1.41 (234) 

SWIG 1.033 3.17 /3.63 (92) 1.39 /1.84 3.17 /3.63 (92) 3.17 /3.63 (92) 3.17 /3.63 (92) 1.79 /2.25 (92) 3.17 /3.63 (92) 

Sandy loam 
Literature 0.208 1.58/0.67 (315) -0.13/0.67 1.53/0.65 (337) 1.73/0.64 (65) 1.58/0.92 (79) 0.66/0.54 (169) 1.17/1.34 (825) 

SWIG 0.534 2.89 /3.36 (500) 1.10 /1.58 2.89 /3.36 (500) 2.89 /3.36 (500) 2.89 /3.36 (500) 1.51 /1.98 (500) 2.89 /3.36 (500) 

Silt loam 
Literature 0.043 1.28/0.74 (130) -0.4/0.55 1.04/0.54 (217) 1.24/0.47 (12) 1.48/0.86 (103) 0.11/0.87 (215) 0.89/1.45 (714) 

SWIG 0.442 2.80 /3.17 (409) 1.02 /1.39 2.80 /3.17 (409) 2.80 /3.17 (409) 2.80 /3.17 (409) 1.42 /1.79 (409) 2.80 /3.17 (409) 

Loam 
Literature 0.042 1.09/0.92 (117) -0.32/0.63 0.99/0.63 (137) 0.83/0.95 (50) 1.58/0.92 (62) 0.12/0.79 (81) 1.69/1.76 (411) 

SWIG 0.129 2.27 /2.81 (583) 0.49 /1.02 2.27 /2.81 (583) 2.27 /2.81 (583) 2.27 /2.81 (583) 0.89 /1.43 (583) 2.27 /2.81 (583) 

Sandy clay loam 
Literature 0.038 1.14/0.85 (13) -0.2/0.54 1.29/0.71 (104) 0.81/0.80 (36) 0.99/1.21 (41) 0.12/0.94 (139) 0.73/1.45 (128) 

SWIG 0.124 2.25 /2.49 (185) 0.47 /0.70 2.25 /2.49 (185) 2.25 /2.49 (185) 2.25 /2.49 (185) 0.87 /1.11 (185) 2.25 /2.49 (185) 

Silty clay loam 
Literature 0.010 1.04/0.74 (46) -0.54/0.61 0.87/0.55 (47) 1.09/0.78 (21) 1.14/0.85 (21) -0.15/0.75 (83) 0.35/1.50 (364) 

SWIG 0.178 2.41 /2.77 (250) 0.62 /0.98 2.41 /2.77 (250) 2.41 /2.77 (250) 2.41 /2.77 (250) 1.03 /1.39 (250) 2.41 /2.77 (250) 

Clay loam 
Literature 0.015 0.87/1.11 (58) -0.46/0.59 0.67/0.58 (77) 0.79/1.08 (48) 1.84/0.89 (25) -0.03/0.94 (109) 1.10/1.54 (284) 

SWIG 0.139 2.30 /2.68 (467) 0.52 /0.90 2.30 /2.68 (467) 2.30 /2.68 (467) 2.30 /2.68 (467) 0.92 /1.3 (467) 2.30 /2.68 (467) 

Sandy clay 
Literature 0.013 1.06/0.89 (10) 0.01/0.33 1.33/0.33 (9) -0.03/1.28 (2) - (-) -0.77/1.22 (21) 0.81/1.56 (5) 

SWIG - - /- (-) -/- - /- (-) - /- (-) - /- (-) - /- (-) - /- (-) 

Silty clay 
Literature 0.006 0.98/0.58 (14) -0.72/0.69 0.82/0.55 (12) 1.15/0.16 (5) 0.92/0.71 (12) -0.72/0.95 (22) 0.18/1.32 (349) 

SWIG 0.439 2.80 /3.17 (121) 1.02 /1.39 2.80 /3.17 (121) 2.80 /3.17 (121) 2.80 /3.17 (121) 1.42 /1.79 (121) 2.80 /3.17 (121) 

Clay 
Literature 0.008 1.17/0.92 (60) - 0.94/0.31 (34) 1.03/0.83 (31) 1.41/015 (27) -0.17/0.71 (115) -0.08/1.41 (737) 

SWIG 5.906 3.93 /4.48 (333) 2.15 /2.70 3.93 /4.48 (333) 3.93 /4.48 (333) 3.93 /4.48 (333) 2.55 /3.10 (333) 3.93 /4.48 (333) 

Silt 
Literature - 1.64/0.27 (3) - 1.43/- (3) - (-) 1.75/0.20 (3) - (-) -0.29/1.56 (11) 

SWIG - -/- (-) -/- -/- (-) -/- (-) -/- (-) -/- (-) -/- (-) 
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 913 

Figure 1- Global distribution of infiltration measuring sites that were included in the database914 
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 915 

Figure 2 - Textural distribution of soils (plotted on USDA textural triangle) for which infiltration data are included 916 

in the database. 917 
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 918 

Figure 3- Cumulative infiltration curves for the three identified textural groups: coarse (sand, loamy sand, and sandy 919 

loam), medium (loam, silt loam, silt), and fine to moderately fine (sandy clay, sandy clay loam, clay loam, sandy 920 

clay loam, silty clay, clay) 921 
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 922 

Figure 4- Cumulative infiltration curves for the four dominant land use types in examined sites 923 
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 924 

Figure 5- The relationships between clay, silt, sand contents and estimated hydraulic parameters (S and Ksat) 925 
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 926 

Figure 6- The relationships between clay, silt, sand contents, Db, and OC and estimated hydraulic parameters (S and 927 

Ksat) 928 

 929 
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